Understanding the most commonly used laser optics materials will allow for easy navigation of EO’s wide selection of laser optics components. 下面的表 1 列出了用于激光光学元件的常用基片以及它们的关键特性,还有每种材料的透射率曲线。表 1中的所有数值均为 1064nm 和 20° C 时的测量值,所有透射率曲线均显示 5mm 厚的基片在无菲涅耳反射的情况下进行的内部透射率。透射率数据采用爱特蒙特光学的分光光度计采集。
Material | 透射率范围 (nm) | 折射率 (n) | 色散系数 (v) | 群速度色散 (fs2/mm) | dn/dT (10-6/K) |
热膨胀系数 (10-6/K) | 相对价格 |
CaF21 |
200nm – 7μm |
1.429 |
95.1 |
17.280 |
-10.6 |
8.85 |
$$$ |
UV 级熔融石英 (Corning HPFS® 7980)2 | 185nm – 2.1µm | 1.450 | 67.8 | 16.476 | 9.6 | 0.55 | $$ |
KrF 级熔融石英 (Corning HPFS® 7980)2 | 185nm – 2.1µm, T ≥ 99.9% @ 248nm | 1.450 | 67.8 | 16.476 | 9.6 | 0.55 | $$$ |
IR 级熔融石英 (Corning HPFS® 7979)2 | 300nm – 3.5µm | 1.451 | 67.8 | 16.476 | 9.7 | 0.55 | $$($) |
N-BK73 | 350 – 2000nm | 1.507 | 64.2 | 22.369 | 3.0 | 7.1 | $ |
N-SF53 | 330 – 2500nm | 1.651 | 32.3 | 77.779 | 3.4 | 7.9 | $ |
蓝宝石*4 | 200 – 5500nm | 1.755 | 72.2 | 28.588 | 13.1 | 5.4 | $$$ |
N-SF113 | 400 – 2500nm | 1.754 | 25.8 | 118.44 | 2.4 | 8.5 | $ |
*蓝宝石是一种双折射材料,所有规格均与 C 轴平行
Table 1: Common laser optics substrates and their key properties (all values at 1064nm and 20° C). Materials are listed from smallest refractive index to largest refractive index. The small dollar sign by KrF grade fused silica indicates that it is slightly more expensive than UV grade fused silica. SImilarly, the small dollar sign in parentheses by IR grade fused silica indicates that it is sometimes slightly more expensive than UV grade fused silica, but it is almost never cheaper
图 1: CaF2 在 UV 和 IR 光谱中具有优异的透射性能,是 UV 和 IR 激 光光学应用的理想选择
图 2: 蓝宝石高度耐用,可以在从 UV 到 IR 的广泛波长范围内使用
图 3: 熔融石英可用于 UV 和 IR 级别,通过材料中 OH 含量的多少来区分
图 4: 尽管熔融石英在激光光学中较为常见,但 CaF2、蓝宝石、N-BK7、N-SF5 和 N-SF11 在一些透射激光光学元件中也有应用
图 5: N-BK7、N-SF5、N-SF11 在 IR 光谱中的透射率迅速下降
参考文献
- I. H. Malitson. “A redetermination of some optical properties of calcium fluoride,” Appl. Opt. 2, 1103-1107 (1963)
- “Corning HPFS® 7979, 7980, 8655 Fused Silica.” Corning, February 2014.
- “Optical Glass Data Sheets.” Schott, February 2014.
- I. H. Malitson. “Refraction and dispersion of synthetic sapphire,” J. Opt. Soc. Am. 52, 1377-1379 (1962)
- Collier, David, and Rod Schuster. “Superpolishing Deep-UV Optics.” Photonics Spectra, February 2005.